说说很酷的散点图

说说很酷的散点图

简介

散点图是指在回归分析中,数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。 用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。散点图将序列显示为一组点。值由点在图表中的位置表示。类别由图表中的不同标记表示。散点图通常用于比较跨类别的聚合数据。

注意事项

1.散点图通常用于显示和比较数值,例如科学数据、统计数据和工程数据。

2.当要在不考虑时间的情况下比较大量数据点时,请使用散点图。散点图中包含的数据越多,比较的效果就越好。

3.气泡图要求每个数据点具有两个值(探顶值和探底值)。

4.对于处理值的分布和数据点的分簇,散点图都很理想。如果数据集中包含非常多的点(例如,几千个点),那么散点图便是最佳图表类型。在点状图中显示多个序列看上去非常混乱,这种情况下,应避免使用点状图,而应考虑使用折线图。

5.默认情况下,散点图以圆圈显示数据点。如果在散点图中有多个序列,请考虑将每个点的标记形状更改为方形、三角形、菱形或其他形状。

6.他们散布在从右上角到左下角的区域。对于两个变量的这种相关关系,我们将他们称为正相关。还有一些变量,例如汽车的重量和汽车每消耗1L汽油所行驶的平均路程,成负相关,汽车越重,每消耗1L汽油所行驶的平均路程就越短,这时的点散布在从左上角到右下角的区域内。

散点图可以提供三类关键信息

  • 变量之间是否存在数量关联趋势
  • 如果存在关联趋势,是线性还是曲线的
  • 如果有某一个点或者某几个点偏离大多数点,也就是离群值,通过散点图可以一目了然。从而可以进一步分析这些离群值是否可能在建模分析中对总体产生很大影响。